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Abstract

Retrieval-Augmented Generation (RAG) is
widely used in knowledge-intensive tasks, such
as open-domain QA. However its effectiveness
in reasoning-intensive tasks like mathematical
problem-solving and code generation remains
unclear. In this paper, we investigate the impact
of incorporating oracle algorithmically similar
documents into the context on performance in
reasoning-intensive tasks. Our study spans five
diverse code and mathematics tasks. Results
vary dramatically across tasks, ranging from
66% performance degradation to 50% improve-
ment. We further observe that RAG particularly
helps in cases where high-level algorithmic de-
cisions dominate model errors, but fails to fix
algorithm implementation, or problem misun-
derstanding errors. Our results point to future
research that focus on enhancing model uti-
lization of retrieved documents and exploring
retrieval methods for reasoning-intensive tasks.

1 Introduction

Retrieval-Augmented Generation (RAG) has
emerged as a powerful paradigm for enhancing
language models through external knowledge
retrieval during inference, demonstrating re-
markable success in knowledge-intensive tasks
like open-domain question answering and fact
verification (Guu et al., 2020; Lewis et al., 2020).
Yet despite this success, RAG’s effectiveness for
reasoning-intensive tasks, particularly in coding
and mathematical problem-solving, remains
under-explored. Recent investigations into
reasoning-based RAG have yielded contradic-
tory results as the performance changes varies
significantly across settings, models, and curated
corpora (Wang et al., 2024b; Su et al., 2024;
Shi et al., 2024). This raises a crucial question:
Under what conditions can we expect retrieval
to enhance model performance on reasoning tasks?
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Errors Resolved Due to Retrieval:
Figure 1: Under different models and tasks, the effect
of RAG varies wildly. Tasks instances that benefit from
retrieval largely benefit from fixing algorithm selection
errors.

To address this question, we conduct a sys-
tematic evaluation of reasoning-based RAG’s
performance across 5 diverse coding and mathe-
matical tasks, spanning various difficulty levels
and problem-solving paradigms. We first curate
sets of documents corresponding to each task
instance based on oracle-selected algorithmic topic
tags and human-curated matches like (Su et al.,
2024), simulating a near-perfect reasoning-based
retriever. Then, models are provided these algorith-
mically optimal documents to isolate the model’s
ability to leverage retrieved content, removing
retrieval accuracy as a confounding factor. Our
investigation show that performance impacts vary
dramatically across tasks and models, ranging
from 66% degradation to 50% improvement in
relative performance. Notably, we discover that
increasing the number of retrieved documents
rarely improves performance, suggesting that
SOTA models cannot leverage a large number of
retrieved documents on reasoning-heavy tasks
in contrast to their effectiveness on knowledge-
intensive tasks (Wang et al., 2024a; Qi et al., 2019).

To understand these varying results, we con-

1

mailto:benshi@princeton.edu


+
Relevant Coding

Problem

Match via 
Problem/Theorem Tags 

+ Human Check

Coding, Math 
Problem/Theorem
Corpus

Relevant Math
Problem or 

Theorem WIki
Coding/Math

Problem
Internet 

Algorithm/Theorem Tags

or 

Figure 2: Overview of oracle document collection process.

duct a qualitative analysis of model outputs,
finding that most errors can be categorized as
either failure to understand the problem, failure to
select the correct algorithm/data structure to solve
the problem, or failure to implement the selected
algorithm/data structure. We find a distinct shift in
error distribution between tasks where reasoning
RAG proves beneficial versus those where it falls
short. Successful cases of RAG-assisted problem
solving predominantly occur when the original
zero-shot errors stem from incorrect algorithm
or data structure selection. This pattern suggests
that current models primarily leverage retrieved
documents at a high-level, algorithmic planning
stage rather than for fine-grained implementation
details or deeper reasoning steps. This suggests
that future efforts to enhance downstream perfor-
mance should prioritize improving models’ ability
to effectively utilize retrieved documents, rather
than solely focusing on developing better retrieval
mechanisms, which is what much contemporary
work focuses on (Su et al., 2024; Wang et al.,
2024b).

To summarize, our core contributions are:

• A curated dataset 1 of oracle documents
matched to task instances by high overlap in
algorithmic similarity.

• A comprehensive evaluation of oracle
reasoning-based RAG across diverse cod-
ing and mathematical tasks, establishing
approximate RAG upper bounds.

• A dataset of human annotated error mode anal-
ysis on model outputs, showing that current
reasoning-based RAG systems primarily bene-
fit high-level algorithmic planning rather than
implementation details.

1See code + datasets here: https://github.com/
benshi34/LCBRetrieval

2 Related Work

Retrieval Augmented Generation Retrieval
Augmented Generation (RAG) (Guu et al., 2020;
Lewis et al., 2020) has emerged as a significant
approach to address the knowledge limitations of
closed-domain language models (Ram et al., 2023).
While its efficacy has been notable in knowledge-
intensive tasks that require synthesis of knowledge
over large knowledge bases (Asai et al., 2023;
Zhou et al., 2022; Borgeaud et al., 2022; Khan-
delwal et al., 2019), its performance on reasoning-
intensive tasks has not been well documented in
recent literature.

Retrieval in Code + Math CodeRAG (Wang
et al., 2024b) is one of the first efforts to broadly ex-
amine the ability of retrieval to improve coding per-
formance on tasks such as SWE-Bench (Jimenez
et al., 2023), HumanEval (Chen et al., 2021), and
MBPP (Austin et al., 2021), obtaining largely neg-
ative results. However, selected tasks, such as were
not selected with challenging model reasoning in
mind BRIGHT (Su et al., 2024) builds a widely
scoped retrieval benchmark encompassing many
reasoning tasks, such as coding, math, and science-
based QA to measure retrieval based on algorithmic
similarity.

Code + Math Benchmarks Early evaluations
include GSM8k (Cobbe et al., 2021), HumanEval
(Chen et al., 2021), However, with the rapid devel-
opment of frontier models, performance in many
benchmarks have been quite saturated. In our work,
we select from benchmarks with generally poor
baseline performance with larger room for improve-
ment, such as USACO (Shi et al., 2024), Live-
CodeBench (Jain et al., 2024), TheoremQA (Chen
et al., 2023), and AoPs, a collection of olympiad
math problems similar to MATH (Hendrycks et al.,
2021).

3 Experiment Setup

Our objective is to evaluate the maximal retrieval
performance on reasoning-intensive tasks, condi-
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Figure 3: Performance overview of models on LeetCode, AtCoder, USACO, TheoremQA, and AoPS task sets.

tioned on relevance determined by algorithmic sim-
ilarity. To extend prior work (Su et al., 2024; Wang
et al., 2024b), we introduce a broader dataset of
coding and math problems annotated with oracle
algorithmic labels, enabling the exploration of con-
crete upper bounds that remain underexamined in
previous studies. Specifically, we select five di-
verse sources of coding and math problems and
analyze model performance with and without re-
trieval, leveraging gold-standard relevance docu-
ments during inference.

Tasks For evaluation, we select a suite of rep-
resentative, challenging reasoning-intensive tasks,
centered on coding and math. For coding, this in-
cludes competition-style programming problems
obtained from Leetcode, AtCoder (Jain et al.,
2024), and USACO (Shi et al., 2024). For math,
this includes TheoremQA (Chen et al., 2023), as
well as AoPS (Su et al., 2024), a subset of the prob-
lems in the MATH (Hendrycks et al., 2021) dataset
with human-labelled algorithm + relevance tags.

Document Criteria We define document rele-
vance based on algorithmic similarity, similar to
(Su et al., 2024). A document is considered relevant
if it contains the core algorithm or data structure
required to solve the target problem. For exam-
ple, a document containing telescoping series prob-
lems would be relevant to a new telescoping series
problem, but not to problems involving geomet-
ric series. For coding tasks, the reference docu-
ments consist of problem statements paired with
their solutions. Math task documents contain either
problem-solution pairs or relevant theorem wiki
pages, depending on the experimental setting. We
summarize the document corpus in Appendix A.1.

Obtaining Oracle Relevance Documents We
establish oracle relevance labels through a two-

step process, as illustrated in Figure 2. For US-
ACO and Leetcode, we first utilize problem tags
from https://usaco.guide/, where documents
sharing the most tags with the target task are ini-
tially selected. For math problems, relevant wiki
pages serve as oracle labels. All selections then
undergo human verification to confirm algorithmic
relevance, with irrelevant problems removed from
the test set.

Inference Settings At inference time, we eval-
uate each model’s ability to generate either the
correct code for coding problems, or the correct
numerical answer for math problems. Numerical
answers are verified through exact match, and code
answers are verified through correctness defining
test cases. 3 different settings are analyzed: zero-
shot, random retrieval, and oracle retrieval. We
analyze up to 5 documents retrieved for each task.

Models We evaluate on a suite of closed and open
models representing the frontier of coding/math
performance, including GPT-4o, llama-3.1-70b-
instruct (Llama-70b), claude-3.5-sonnet, and
deepseek-coder-v2-lite (Deepseek-Coder-Lite).

4 Results

Full results can be found in Figure 3. We summa-
rize the core findings below.

Improvements are Inconsistent The impact
of retrieval with gold-relevant documents varies
widely across tasks. For example, USACO shows
significant improvements over the random base-
line for all models tested. In contrast, tasks like
LeetCode and TheoremQA exhibit marginal gains,
somewhat inconsistent between models. Notably,
tasks such as AtCoder and AoPS not only fail to
benefit from retrieval but often experience perfor-
mance drops.

3

https://usaco.guide/


Understand the Problem

Design/Select 
Algorithm/Theorem

Implement 
Algorithm/Theorem

Problem: Compute all paths only using the 
left operation.
Sol: To solve this problem, we can use the up 
and left operation…

Problem: Compute all paths only using the 
left operation.
Sol: To solve this problem, we can perform a 
linear search over…

Problem: Compute all paths only using the 
left operation.
Sol: for op in range(operations-1):

if op == 3:

Figure 4: Distribution of error types (Algorithm Implementation, Selection, and Problem Understanding) in cases
where RAG succeeded versus failed. RAG predominantly resolves Algorithm Selection errors while showing limited
effectiveness in addressing Implementation errors.

Figure 5: Performance of the model as a factor of number of documents provided at inference time (input length).

Varying Robustness to Noisy Contexts. The
performance of certain models, particularly
LLaMA and DeepSeek, degrades significantly
when more documents are appended as context.
This is in contrast to larger closed-source mod-
els, such as Claude and GPT-4o, which are largely
unaffected by additional, potentially less relevant
documents in context. This suggests that these
models struggle to filter relevant information effec-
tively, making them more sensitive to noise in the
retrieved content.

4.1 Qualitative Analysis

Why does the effectiveness of retrieval vary so
much between tasks? To better understand this,
we examine a representative set of problems newly
solved (n=30) and unsolved by RAG (n=45) from
all problem sources evaluated. For these cases,
we analyze the model’s original errors, categorize
them into distinct error modes, and evaluate how
retrieval either mitigated or failed to address these
issues. A full summary of results2 can be found in
the appendix in Figure 6.

Error Categorization. Through our analysis, we
identified three primary error modes:

• Algorithm Implementation: The model

2See full dataset at https://
huggingface.co/datasets/benshi34/
qual-analysis-reasoning-retrieval

identifies the correct algorithm but fails to im-
plement it correctly.

• Algorithm Selection: The model fails to se-
lect the appropriate algorithm to solve the
problem.

• Problem Understanding: The model misin-
terprets or overlooks key problem specifica-
tions, leading to incorrect algorithm design
and implementation.

It is important to note that these error classes are
not mutually exclusive. Instead, they represent dis-
tinct points of failure that a model may encounter
along its path to solving a problem. For instance, a
model must first understand the problem correctly;
without this foundation, subsequent steps, such as
selecting an algorithm, are likely to fail. However,
understanding the problem does not guarantee cor-
rect algorithm selection, as the model may still
choose an inefficient or inappropriate approach. We
summarize the findings of qualitative error analysis
below.

Algorithmic RAG Fixes Selection Errors We
observe that problems benefiting from retrieval pre-
dominantly fall under the Algorithm Selection cat-
egory. In particular, many of these problems were
originally marked by time limit exceeded (TLE)
errors, where the model lacked the knowledge to
select an efficient algorithm. Retrieval often pro-
vides the model with relevant algorithmic strategies
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or examples. For instance, in problem "farmer john
has no large brown cow" from USACO, the model
initially used a linear search, but switched to binary
search given a document suggesting such optimiza-
tion was necessary.

RAG Fixes Problem Understanding Errors
When Contexts Align. In some cases, retrieval
aids Problem Understanding errors when the re-
trieved documents contain problems with similar
structures or specifications. For instance, in prob-
lem "2023_AIME_II_Problems/Problem_9" from
AoPS, the model initially misunderstood the la-
beling of edges in a trapezoid. However, seeing
correct reasoning about edge labeling caused the
model to understand the problem as intended.

RAG Struggles with Fixing Implementation Er-
rors. In contrast, retrieval is less effective in
cases where the model struggles with Algorithm
Implementation or Problem Understanding. De-
spite having highly relevant material in context,
the model fails to utilize it to correct its solution.
For example, in ’decremental-string-concatenation’
from LeetCode, the model fails to keep track of the
previous state while implementing its designed DP
solution. Despite a similarly structured DP solution
retrieved in context, the model fails to apply a fix
to the current solution, repeating the same mistake.

5 Conclusion

In this paper, we provide insights into the circum-
stances in which algorithmic retrieval helps down-
stream performance on difficult reasoning tasks,
such as coding and math. We find that retrieval is
most helpful when it can address high-level algo-
rithm selection errors, providing models with the
necessary algorithmic insights. However, retrieval
is less effective at resolving low-level implemen-
tation issues or addressing fundamental misunder-
standings of the problem. We highlight two core
directions for future work in reasoning-based re-
trieval:

Model Usage of Retrieved Documents As seen
in the qualitative analysis dataset, models often re-
main anchored to their initial solution approaches
even when retrieved documents contain clearly
helpful information. Even with optimal retrieval
and careful prompting, models frequently fail to in-
corporate retrieved information into their problem-
solving process, suggesting that utilizing docu-
ments for complex reasoning tasks may be out of

distribution for current frontier models. Future
work should focus on developing models that can
more flexibly adapt their strategies based on re-
trieved information.

Alternative Definitions of Utility In this work,
we define "oracle retrieval" based on algorithmic
similarity as constructed by humans. However, our
analysis suggests that models may have their own,
less intuitive utility functions for determining doc-
ument relevance. For instance, a model’s struggles
with a dynamic programming problem might stem
from data structure choices rather than algorithm
implementation. Future research should investigate
these alternative definitions of document utility to
better align retrieval strategies with how models
actually leverage external information.

6 Limitations

Tasks Considered We do not discount the pos-
sibility that the insights obtained are specific to
our tasks selected, and do not generalize to other
tasks. However, since coding and math problems
are generally of similar formats, we hope that our
task selection is general enough to broadly apply
to these reasoning problems and beyond.

Models Utilized We had only considered four
models, 2 open and 2 closed of varying sizes, which
limits our generalization to other types and sizes of
models. Additionally, we could not the best of open
models available, like llama-405b, due to compute
restraint.

Scale of Analysis Due to compute restraints, we
only averaged Pass@1 results over 3 trials, which
introduces some amount of variance into our re-
ported model performances. Additionally, we only
analyzed 54 total problems for qualitative analysis:
there may be small result changes given different
subsets selected.

7 Potential Risks

We do not believe this work contains any substan-
tial risks. This work intends to analyze and show
the downstream effects of retrieval augmented gen-
eration given optimal retrieval in code and math
problems, and does not introduce any new systems
that could be malicious.
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A Experiment Details

A.1 Model Endpoints
The model endpoints used were gpt-4o-2024-08-06,
llama-3.1-70b, DeepSeek-Coder-V2-Lite-Instruct,
claude-3-5-sonnet-20240620.
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Statistic Corpus Value

Num Docs
Math 560
Coding 3,247

Mean Doc Length
Math 1,234 words
Coding 876 words

Text Contents
Math Natural Language, LaTeX
Coding Natural Language, Code

Document Types
Math Wikis, Problem + Solutions
Coding Problem + Solutions

Source
Math AoPS, TheoremQA
Coding LeetCode, AtCoder, USACO

Table 1: Stats of the document pool in which we selected the oracle documents from.

Figure 6: Sample of error classification analysis performed on problems that are solved via retrieval.

Figure 7: Sample of error classification analysis performed on problems that are not solved via retrieval.
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Benchmark Num Problems Correctness

TheoremQA (Problem) 206 Exact Match
TheoremQA (Theorem) 78 Exact Match
AoPS(Problem) 111 Exact Match
AoPS(Theorem) 94 Exact Match
USACO 307 Test Case
LeetCode 181 Test Case
AtCoder 210 Test Case

Table 2: Statistics of benchmarks used in the study. This table summarizes the number of problems and methods of
correctness determination for each benchmark.

Oracle Document (Problem):Current Question (Code):

The intuition behind the solution is to use Dynamic Programming (DP), which is a 
method for solving complex problems by breaking them down into simpler 
subproblems. The idea here is that if we can break the string s up to a given point, then 
we can independently check the remainder of the string for other words from 
wordDict. We can cache results to avoid redundant computations for the same 
substrings…

Let's delve into the algorithm and the data structures used:

1. We start by initializing a set words from wordDict for fast lookups of 
words in the dictionary.

2. An array f is created with a size of n+1 where n is the length of the string 
s. The array f is initialized to all False except for f[0] which is True. 
This represents that it's always possible to segment an empty string.

3. We then iterate over the string s from the first character to the last…

Code: [Solution Code Omitted]

Figure 8: Sample Problem-Document Pair
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